エネルギーの釣合いに基づく耐震設計法 を採用した構造設計の実施例

宮木志伸* 尾崎亮斗* 中里太亮** 河合慶哉***

平成17年国土交通省告示631号「エネルギーの釣合いに基づく耐震計算等の構造計算(以下,エネルギー法)」による構造設計法は,稀に発生する地震動に対して制振部材を塑性化させることが許容されており, 有効に使用することで従来の設計法よりも合理化,コスト低減が期待されると報告されている. 本稿では当社初となるエネルギー法による構造設計法を適用した物流倉庫の実施物件についてまとめ,耐 震設計との比較や,地盤性状の違いが与える影響について検討を実施した.

キーワード:エネルギー法、物流倉庫、制振構造、地盤増幅係数

1. はじめに

近年の生活様式の変化及びテレワークの増加等により, 物流における流通量が飛躍的に増加している.これらの 需要に対応するため,物流施設の新築物件数が大幅な増 加傾向にあり,当社でも床面積が10万㎡を超える大型の 物流施設から小,中型の物流施設まで計画,設計を行う 機会が増えている.一方,「耐震性能向上」と「経済性」 の両立を目標にこれらの物流施設を制振構造とし,「エネ ルギーの釣り合いに基づく耐震計算法(以下,エネルギー 法)」により,時刻歴解析を用いることなく,設計を行う 事例が報告されている.当社でも文献¹¹により本計算方法 による検証を行っており,レベル2地震動による時刻歴 応答解析による結果と同じ傾向を示していることが報告 されている.

以上から、本報告では4階建ての物流施設の設計にお いて、エネルギー法の採用事例を報告するとともに、地盤 性状の違いが設計に与える影響について検討し、本計算 方法の特性についてまとめた結果を示す.

2. エネルギー法を採用した設計事例

2.1 建物概要

本事例の建物概要を Table 1に, Fig.1, Fig.2に伏図 及び軸組図を示す.本物件は X 方向 96.7m, Y 方向 81.2m となる 4 階建ての物流倉庫で, 階高は 1 階が 7.8m, 2~3 階が 6.7m,4 階が 6.2m である.1 階の南北及び 2 階の南 側に車路とトラックバースを有している.また,建物の西 側に耐震構造のスロープ棟が Exp.J を介して接続されて いる.

*	設計本部 構造設計部構造第2グループ
* *	建築技術統括部 建築構造技術部
* * *	設計本部 構造設計部構造第1グループ

建築物用途	倉庫
構造種別	鉄骨造
建築面積	7, 993. 64m ²
延べ床面積	$31, 446. 56m^2$
階数	地上4階
高さ	30. 2m
標準階高	6. 7m
架構形式	1~3 階 : ブレース型ダンパー部分を
	有するラーメン構造
	4 階:ブレース付きラーメン構造

Table 1 建物概要

2.2 地盤概要

本計画敷地の地盤性状を Fig.3 に示す. 地盤調査結果 より, GL-40m 以深の砂礫層を工学的基盤とした第2種地 盤であり, 液状化の可能性が低いことを確認した.また, 告示第 1457 号第 10 第2項第一号²⁰に適合する工学的基 盤を有することから, PS 検層の結果より地盤増幅係数 Gs を精算した.

2.3 設計概要

本建物はエネルギー法を採用した制振構造の鉄骨造で ある.架構形式は、1~3階がブレース型ダンパー部分を 有するラーメン構造、4階をブレース付きラーメン構造と した.

Table 2に本建物の上部構造における使用部材を示す.

Table 2 上部構造における本建物の使用部材

柱	$\Box -400 \times 400 \times 16 \sim \Box -650 \times 650 \times 40$
梁	H-346×174×6×9~H-1000×400×19×40
座屈拘束	降伏軸力 100~350kN(制振用)
ブレース	

1

1~3 階に使用するダンパーは、芯材に低降伏点鋼 (LY225)を用いたバイリニア型の復元力特性を持つ制振 用座屈拘束ブレースで、降伏軸力が100~350kNのものを 採用した.座屈拘束ブレースの配置は、外周部及びエレベ ーター開口部については V 型配置、その他の部分につい ては K 型配置を基本としている.基礎は GL-11.8m 付近の 砂礫層を支持層とする杭基礎とした.

その他,設計方針を以下に示す.

①1~3 階の座屈拘束ブレースは、エネルギー法告示上の ダンパー部分として扱い、4 階のブレースは耐震ブレー スのため、主架構として計算を行う。

②表層地盤の地盤増幅係数 Gs は損傷限界時の検討では

告示による略算を,安全限界時の検討では PS 検層よ り得られたせん断波速度 Vs を用いて算出する.

- ③建物に作用する外力分布はAi分布系とする.
- ④主架構に使用する鉄骨は全て FB ランク以上とする.
- ⑤稀に発生する地震動(以下,稀地震)に相当する等価 な層せん断力に対し,各階の層間変形角は1/200以下
- とする. ●発地雪に対すて建物の球の亦形は 1/1000 NIT にす
- ⑥稀地震に対する建物の残留変形は1/1000以下とする.
- ⑦安全限界時の弾性エネルギーの評価には告示によるた だし書きを適用する.

⑧安全限界時の最大層間変形角は1/100以下とする.

・柱 □-400×400×16~ □-650×650×40

- ・梁
 H-346×174×6×9~
 H-1000×400×19×40
 ・耐震ブレース
- $2C-150 \times 75 \times 6.5 \times 10$
- ・座屈拘束ブレース
 降伏軸力 100~350kN (LY225)

Fig.2 E通り軸組図

2. 4. 1 稀に発生する地震動に対する検討

稀地震に対する検討では,式(1)より建物への入力 エネルギーEdを算出し,建物が損傷限界内で吸収できる エネルギー量 We と比較し,Ed が We 以下であることを確 認する.

$$\mathrm{Ed} = \frac{1}{2}MVd^2 \qquad \cdots \cdots \cdots (1)$$

入力エネルギーEd は建物の質量 M とエネルギー量の速 度換算値 Vd より算出し, Vd については, Table 3 に示 す建物の固有周期 Td, 地域係数 Z, 表層地盤の地盤増幅 係数 Gs に応じて式(2)より与えられる.この時の固有 周期 Td は損傷限界時における等価剛性を用いた固有値 解析により算出した.

$$Vd = \frac{1}{2\pi} \cdot 1.024 \cdot Z \cdot Gs \quad (0.64 \le Td) \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

1階における X 方向, Y 方向それぞれの荷重-変形関 係を Fig. 4, Fig. 5 に示す.また,損傷限界時に対する エネルギー量の検討結果を Table 4 に示す.損傷限界時 までの吸収エネルギー量 We と稀地震時における建物へ の入力エネルギーEd の比は X 方向で 1.40, Y 方向で 1.29 となり,両方向で安全性を確保していることを確認 した.この時, Fig. 4, Fig. 5 より,稀地震時において建 物の吸収エネルギーはダンパー部分に多く依存している ことが示された.

Table 5 に稀地震時における層間変形角を示す. 層間 変形角が X 方向, Y 方向共に各階で 1/200 以下であるこ とを確認した.また,本建物は稀地震時に 1~3 階でダ ンパーの塑性化を許容しているため,塑性化に伴う残留 変形についての検討を実施した³⁾.検討の結果,各階の 残留層間変形角が 1/1000 以下であることを確認した.

	X 方向	Y 方向
Td(s)	1.180	1.165
Z	1.000	1.000
Gs	2.025	2.025
Vd(m/s)	0.330	0. 330

Table ? 損傷限果時における各管完備

Table 4	損傷限界時における各:	エネルギー量
---------	-------------	--------

	X 方向	Y 方向
We(kN•m)	2343	2245
Ed(kN•m)	1736	1736
We/Ed	1.40	1.29

熊谷組技術研究報告 第80号/2021

Table 5 稀地震時における層間変形角と残留層間変形角

	層間変形角		残留層間	間変形角
	X 方向	Y 方向	X 方向	Y 方向
4階	1/498	1/591		_
3階	1/375	1/327	1/2952	1/1349
2階	1/393	1/366	1/2619	1/1543
1階	1/388	1/440	1/1672	1/3497

Fig.4 X方向における1階の荷重一変形関係

Fig.5 Y方向における1階の荷重-変形関係

2. 4. 2 極めて稀に発生する地震動に対する検討

極めて稀に発生する地震動(以下,極稀地震)に対す る検討では,極稀地震時に建物が塑性化することで吸収 する必要があるエネルギー量Esを式(3)で求め,各階 の主架構とダンパーに分配し,それぞれの必要累積塑性 変形倍率 η を算出し⁴,保有累積塑性変形倍率以下とな ることを確認する.

$$\mathsf{Es} = \frac{1}{2}MVs^2 - We \qquad \qquad \cdot \cdot \cdot \cdot \cdot (3)$$

極稀地震時における We の算定は告示によるただし書 きを適用し,必要エネルギー量 Es は Table 6 に示す値 により算定する.この時,安全限界時の固有周期 Ts は Td~1.2Td の範囲で Vs が最大となる値を採用する.

Fig.6にGsの精算値と略算値を示す. 極稀地震時にお いてGsは精算値を用いるが,本設計では安全を考慮し て精算で得られた最大値を用いて設計を行った.

Table 7, Table 8 に主架構及びダンパーの必要累積塑 性変形倍率と保有累積塑性変形倍率の結果を示す. 主架 構の保有値と必要値の比は最小値で7.56 倍であり, エ ネルギー量は十分に余裕があることを確認した. また, ダンパーの最小値は1.35 倍であり, 安全限界時におい て, ダンパーについても余力があることが確認できた.

Table 6 安全限界時における各算定値

	X 方向	Y 方向
Ts(s)	1.180	1.165
Ζ	1.000	1.000
Gs	1.653	1.653
$V_{\rm S}({\rm m/s})$	1.347	1.347
We(kN • m)	23158	26706
Es(kN • m)	5759	2210

Fig.6 精算値と略算値における Gs の比較

方	17Hz	必要累積塑性	保有累積塑性	保有值/
向	陷	変形倍率	変形倍率	必要値
	4 階	0.266	2.75	10.3
v	3階	0.168	3.25	19.4
X	2 階	0.292	2.75	9.40
	1 階	0.430	3.25	7.56
	4階	0.022	2.75	126
v	3階	0.135	3.25	24.1
Ŷ	2 階	0.135	2.75	20.4
	1 階	0.093	3. 25	35.1

Table 8 ダンパーにおける累積塑性変形倍率の比較

方	17HA	必要累積塑性	保有累積塑性	保有值/
向	陷	変形倍率	変形倍率	必要値
	4 階			_
v	3階	325	862	2.65
X	2 階	350	813	2.32
	1 階	287	1266	4.41
	4 階			_
v	3階	563	759	1.35
Ŷ	2 階	485	797	1.65
	1 階	242	1497	6.20

Table 9 に主架構の極稀地震時における最大層間変形 角を示す. X 方向, Y 方向共に2階での層間変形角が最 も大きい値を示しているが, 1/100以下であり,設計方 針を満足している.

Table 9 極稀地震時における最大層間変形角

	X 方向	Y 方向
4階	1/236	1/270
3階	1/108	1/106
2 階	1/101	1/103
1 階	1/117	1/137

2.5 Gsの略算値と精算値における比較

本建物の設計において,Gsは安全限界時に精算値を適 用したが,通常,地盤調査ではPS検層や工学的基盤の 傾斜を確認することを目的とした標準貫入試験は行われ ないため,エネルギー法でGsを精算するためには,事 前に本設計法の採用方針を決め,必要な地盤調査の計画 を立てる必要がある.そこで,告示による略算値を本建 物に用いた場合の算定を行い,精算値による設計結果と の比較を実施した.

Table 10 にそれぞれの値を適用したときの安全限界時 の最大層間変形角を示す.告示において略算では、Gs が 精算値に比べて約1.2 倍の値であり、それに伴って建物 の必要エネルギー量 Es、最大層間変形角も大幅に上昇し た.しかし、一般にエネルギー法の告示では、安全限界 時の最大層間変形角の規定はなく、設計者判断となるた め、最大層間変形角は1/70 程度と設定している事例も 報告されている⁵.

Table 11, Table 12 に主架構及びダンパーの累積塑性 変形倍率を示す. Table 11 より,主架構の必要累積塑性 変形倍率は Es に比例して上昇しているが,保有値と必 要値の比は最小値で 2.15 倍となり,余裕のあることが 示された.一方で Table 12 より,ダンパーの必要累積 塑性変形倍率についてほとんど差はないものの,保有累 積塑性変形倍率が大きく低下しており,Y方向 3 階で必 要値が保有値を超える結果となっている.そのため,略

研究報告 Technical Report

算値を用いる場合,Y方向3階のダンパーの降伏軸力を 上昇させる必要がある.但し,それ以外の部分について は規定値以内であることから,架構全体に大きな変更は ないものと考えられる.

以上のことから,略算値を使用したことによる Gs の 上昇の影響は極稀地震時において,一部ダンパーの見直 しが必要となるものの,架構全体に大きな変更を与えな いことから,本建物においては略算値を適用した場合で も概ね同等の結果が得られると考えられる.

		精算值		略算值		
		X 方向	Y 方向	X 方向	Y 方向	
Gs		1.653		2.025		
Es		5759	2210	20238	16690	
最大層間 変形角	4 階	1/236	1/270	1/182	1/253	
	3 階	1/108	1/106	1/90	1/75	
	2 階	1/101	1/103	1/77	1/73	
	1 階	1/117	1/137	1/81	1/106	

Table 10 精算値と略算値の適用時における最大層間変形角

方	REE	必要累積塑性	保有累積塑性	保有值/
向	内日	変形倍率	変形倍率	必要値
	4階 0.936		2.75	2.94
v	3 階	0.591	3.25	5.50
λ	X 2階 1階	1.028	2.75	2.68
		1.512	3.25	2.15
	4 階	0.161	2.75	17.1
V	3 階	1.085	3.25	3.00
Y	2 階	0.985	2.75	2.79
	1階	0.677	3. 25	4. 80

Table 11 略算時における主架構の累積塑性変形倍率

Table 12 略算時におけるダンパーの累積塑性変形倍率

方	REA	必要累積塑性	保有累積塑性	保有值/
向	阳	変形倍率	変形倍率	必要値
	4 階			
v	3階	335	695	2.08
Х	X 2階 1階	367	587	1.60
		301	843	2.80
	4 階			
V	3階	587	505	0.86
Y	2 階	506	535	1.06
	1 階	250	1120	4. 48

2.6 耐震モデルとの比較

本建物においてエネルギー法による設計と通常の耐震 設計(保有水平耐力計算)を実施した場合の上部構造に おける躯体数量の比較を行った.本検討における耐震モ デルは,柱・梁の断面,ブレースの本数等を調整し,保 有水平耐力時における最大層間変形角が 1/100 以下とな るように設計した.

Table 13 に耐震モデルにおける上部構造の使用部材 を, Table 14 に各モデルにおける躯体数量の比較を示 す. 耐震モデルでは保有水平耐力を満足するために柱の 断面を大きく, ブレースの本数を増加した. 躯体数量の 増加はその影響が大きいと考えられる. また, 座屈拘束 ブレースについて, 耐震設計では許容応力度設計時にブ レースの降伏を許容しないため, 制振用よりも降伏軸力 の大きいブレースを採用した.

Table 15 に本建物による稀地震時と耐震モデルによる 許容応力度設計時の1階に生じる層せん断力を示す.本 建物に生じる層せん断力は耐震モデルの約60%となって いる.そのため、杭の設計において、耐震モデルよりも 杭径が小さくなり、それに伴い基礎梁の断面を低減で き、合理的に設計できると考えられる.

エネルギー法では,稀地震時からダンパーの降伏を許 容することで,ダンパーに入力エネルギーを吸収させ て,架構に生じるせん断力を耐震モデルより小さく評価 している.そのため柱断面や座屈拘束ブレースの本数, 基礎が合理的に設計できていると考えられる.

Table 13 上部構造における耐震モデルの使用部材

柱	$\Box -500 \times 500 \times 16 \sim \Box -800 \times 800 \times 25$
粱	H-346×174×6×9~H-1000×400×19×40
座屈拘束	咚//+軸力 400~6501-№(副雲田)
ブレース	库(八軸)」400~030KN(IIII展用)

Table 14 上部構造における躯体数量の比較

躯体数量		耐震	エネ法	耐震-
		モデル	モデル	エネ法
鉄骨	柱	968t	803t	165t
数量	梁	985t	955t	30t
ブレー	ス本数	92本	88本	4本

Table 15 1階層せん断力の比較

	耐震	エネ法	エネ法/					
	モデル	モデル	耐震					
1 階層せん断力	62985kN	37306kN	0.60					

3. 地盤性状による比較

3.1 比較概要

エネルギー法では地盤増幅係数 Gs の増減により建物に 要求されるエネルギー性能が変化するため,地盤性状が 建物の設計に大きな影響を及ぼす.そのため,2章で使用 した構造モデルにより,異なる地盤を想定し,地盤性状に よる上部構造への影響を比較した.

仮定した地盤(以下,地盤①)の柱状図を Fig.7 に示

す. 地盤①は GL-60.75m 以深を工学的基盤とした第2種 地盤であり,工学的基盤については告示第1457号第10第 2項第一号²¹に適合するものとする.

地盤①では、PS 検層の結果がないため、標準貫入試験のN値よりS波速度を推定する方法⁶⁰にてせん断波速度 Vsを算出した.

Fig.7 地盤①の柱状図

3.2 軟弱な地層を含む第2種地盤での設計

本建物の敷地を地盤①と想定して,エネルギー法での 設計を実施した(以下,比較モデル).設計方針は本建 物に準じるものとする.

Fig. 8 に地盤①における Gs を示す. 地盤①の Gs は建物の固有周期 1.15s 付近まで建物の固有周期が長くなるほど増大し, 1.15s ~1.7s 付近がピーク値となっている, 第3種地盤の略算値に近い結果となった.

比較モデルの設計では、柱の断面、座屈拘束ブレース の降伏軸力を大きくし、建物の固有周期を短くすること で建物の入力エネルギーを低減させるように設計した.

地盤①について Gs の算定に第3種地盤の略算を参考 のため適用した場合,建物の固有周期1.15s付近までは 精算結果よりも小さい値となる.そのため,建物の固有 周期1.15s以下の範囲において地盤①で略算値を適用した場合,Gsを過小評価することとなるため,稀地震時の検討についても精算値の値を採用した.

Table 16 に比較モデルでの使用部材を示す. 比較モデ ルの柱は全ての階で断面を大きくし,座屈拘束ブレース は、全ての降伏軸力を大幅に上昇させると同時に、本数 を増やす結果となった.これは、入力エネルギー低減を 目的に建物の固有周期を短くするとともに、安全限界時 の層間変形角を 1/100 に抑えるためである.

Table 16 上部構造における比較モデルの使用部材

柱	$\Box -600 \times 600 \times 25 \sim \Box -800 \times 800 \times 32$
梁	H-346×174×6×9~H-1000×400×19×40
座屈拘束	降伏軸力 250~450kN(制振用)
ノレース	

3.3 本建物との比較

Table 17, Table 18 に損傷限界時及び安全限界時にお ける各種算定値を示す.また,1階におけるX方向,Y 方向それぞれの荷重-変形関係をFig.9, Fig.10 に示 す.

Table 17 より,入力エネルギーEd については本建物 とほとんど変わらなかった.一方で,Fig.9,Fig.10 よ り,比較モデルにおいて損傷限界時のせん断力が2倍以 上要求されることが示され,他の階でも同様の結果とな っている.これは,比較モデルの固有周期を短くするた めに架構,ダンパー部の耐力を上昇させたことによるエ ネルギー吸収性能の低下によることが原因と考えられ る.特にダンパー部については,損傷限界時においても ほとんど降伏しなかったため,塑性吸収エネルギーを得 られなかったことが主な要因と考えられる.

また, Table 18 より安全限界時においては入力エネル ギーが大幅に上昇しており, Gsの上昇による入力エネル ギーの増加の影響が顕著に表れている. Table 19 に本建物と比較モデルの上部構造における躯体数量の比較を示す.比較モデルは本建物より鉄骨量が 柱で約96%,梁で約3.5%増加しており,柱の断面を全ての階で大きくした影響が表れている.座屈拘束ブレースについては,降伏軸力が大きくなるとともに,本数も46本増えている.これは建物の固有周期を短くするために降伏軸力を上昇させたものの,制振用のものは耐震用に比べ降伏軸力の上限が小さく,本数を増やすことで所定の固有周期まで低減させたためである.

また,稀地震時に架構に生じるせん断力が上昇したこ とにより,基礎に生じるせん断力も上昇する.そのた め,杭や基礎梁に生じる負担も大きくなり,本建物より も基礎周辺の部材が大きくなることが想定される.

以上より,地盤①におけるエネルギー法での設計は本 建物に比べ柱の断面や,座屈拘束ブレースに大きな違い が表れた.これは,Gsの増加に伴う入力エネルギーの上 昇が大きく影響しており,地盤性状の違いが設計に大き く関係することが示された.そのため,エネルギー法に よる設計を行う際は対象敷地の地盤性状を十分に考慮す る必要がある.また,Gsの算定について,地盤①では建 物の固有周期近傍において略算より精算のほうが高い値 を示したため,地盤によっては稀地震時から精算を用い て検討する等,配慮する必要がある.

	X 方向	Y 方向
Td(s)	0.715	0.678
Ζ	1.000	1.000
Gs	2.008	1.876
Vd(m/s)	0.327	0.306
We(kN • m)	2950	1725
$Ed(kN \cdot m)$	1757	1532
We/Ed	1.68	1.13

a	ID I e	17	孭儼	服界時	にお	ける	の谷耳	上定1	L

lab	le	18	安全的	股界時	にお	ける	谷算	定佪

	X 方向	Y 方向
Ts(s)	0.909	0.825
Ζ	1.000	1.000
Gs	2.299	2.139
$V_{\rm S}({\rm m/s})$	1.873	1.743
We(kN • m)	29413	31775
Es(kN • m)	28125	18056

Table 19	上部構造における躯体数量の比較	
----------	-----------------	--

躯体数量		比較	エネ法	比較-
		モデル	モデル	エネ法
鉄骨	柱	1575t	803t	772t
数量	梁	988t	955t	33t
ブレース本数		134本	88本	46本

Fig.9 X 方向における1 階の荷重-変形関係

Fig. 10 Y方向における1階の荷重-変形関係

4. まとめ

エネルギー法による物流倉庫の設計について,耐震設 計や地盤条件を変更したモデルとの比較を行い,以下の 結果を得た.

- ・エネルギー法の設計に際し、本建物において安全限界時のGsを略算値で算定した場合、エネルギー量の増加により、一部ダンパーの見直しが必要となるものの、架構全体に大きな変更を与えないことが示された。そのため、本建物では略算値を適用して設計を実施した場合でも主架構では同様の設計結果となると考えられる。
- ・本建物におけるエネルギー法での設計は耐震設計に比べ、部材断面、座屈拘束ブレースの本数を効率的にすることができた.エネルギー法では、稀地震時からダンパーの降伏を許容することで、ダンパーに入力エネルギーを吸収させて、架構に生じるせん断力を耐震モデルより小さく評価している.そのため、柱断面や座

屈拘束ブレースの本数,基礎が合理的に設計できてい ると考えられる.

・本建物を軟弱な地層を含む第2種地盤を想定した敷地 で設計を行った場合,鉄骨数量,ブレース断面,本数 が大幅に上昇した.これは、Gsによる入力エネルギー の増加の影響が大きく、入力エネルギーの低減のため に部材断面やブレースの降伏軸力を大きくし、建物の 剛性を上昇させたためである.このことから、エネル ギー法の採用には対象敷地の地盤性状を十分に考慮す る必要がある.また、地盤①での設計において、Gsを 略算で算定する場合、一定区間において精算より小さ い値となり、危険側となることが示された.これよ り、Gsの算定について略算を適用することは必ずしも 安全側の設計とはならず、精算を行うなどして適切な

本稿では4階建ての物流倉庫のみの検討となったが, 今後は建物用途や階数による違いについての検討を実施 し, エネルギー法の適用が可能か検証を試みたい.

参考文献

- 1) 中里太亮,青木浩幸,鈴木真理恵:制振ブレースを用いた物流倉 庫のエネルギー法による構造設計,熊谷組技術研究報告,No. 78, 2019.
- 2) 国土交通省住宅局建築指導課ほか: 2020 年版 建築物の構造関係 技術基準解説書, pp. 474~481, 全国官報販売協同組合, 2020.
- 3)独立行政法人建築研究所ほか:鋼構造建築物へのエネルギー法活 用マニュアルー平成17年国土交通省告示第631号「エネルギーの 釣合に基づく耐震計算法」に準拠して-, p.49,技報堂出版株式会 社,2008.
- 4)独立行政法人建築研究所ほか:鋼構造建築物へのエネルギー法活用マニュアルー平成17年国土交通省告示第631号「エネルギーの 釣合に基づく耐震計算法」に準拠して-, p. 55,技報堂出版株式会社,2008.
- 5)国土交通省国土技術政策総合研究所ほか:エネルギーの釣合いに 基づく耐震計算法の技術基準解説及び計算例, p. 328, 一般財団法 人日本建築センター, 2005.
- 6)国土交通省住宅局建築指導課ほか:2020年版 建築物の構造関係 技術基準解説書, pp. 481~483, 全国官報販売協同組合,2020.

Example of structural design by seismic design based on energy balance

Shinobu MIYAKI, Akito OZAKI, Taisuke NAKAZATO, and Keiya KAWAI

Abstract

値を採用する必要がある.

The method of structural design stipulated in Notification No. 631 of the Ministry of Land, Infrastructure and Transport (2005), "Structural calculation including seismic calculation based on energy balance" (energy method), allows the damping member to plasticize in certain rarely occurring earthquakes. It has been reported that this method should be more streamlined and cost effective than conventional design methods if used effectively. In this report, we summarize the results of our first study of a distribution warehouse using the structural design method based on the energy method, report on a comparison with seismic design, and investigate the effects of various conditions such as soil properties.

Key words: energy method, distribution warehouse, response controlled structure, ground amplification factor